Home
Class 12
MATHS
sum(n=1)^(n)(1)/(log(2^(n))(a))=...

sum_(n=1)^(n)(1)/(log_(2^(n))(a))=

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(n=1)^(n)(1)/(log_(2)(a))

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

sum_(n=1)^(oo)(1)/(2n(2n+1))=

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to

If (1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+ (1)/(log_(2^(n))a) = (n(n+1))/(k) then k log_(a)2 is equal to