Home
Class 10
MATHS
" 1."1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(...

" 1."1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

Prove that by using the principle of mathematical induction for all n in N : 1.3+ 2.3^(2)+ 3.3.^(3)+ ....+ n.3^(n)= ((2n-1)3^(n+1)+3)/(4)

(2.3^(n+1)+7.3^(n-1))/(3^(n+1)-2((1)/(3))^(1-n))=

lim_ (n rarr oo) (1+ (1) / (2) + (1) / (2 ^ (2)) + (1) / (2 ^ (3)) + ...... (1) / (2 ^ (n))) / (1+ (1) / (3) + (1) / (3 ^ (2)) + (1) / (3 ^ (3)) ...... (1) / (3 ^ (n)))

The sum of the series (2)/(3)+(8)/(9)+(26)/(27)+(80)/(81)+ to n terms is n-(1)/(2)(3^(-n)-1)(b)n-(1)/(2)(1-3^(-n))(c)n+(1)/(2)(3^(n)-1)(d)n-(1)/(2)(3^(n)-1)

If A=[[1 , 1, 1],[ 1, 1, 1],[ 1, 1 , 1]] , prove that A^n=[[3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1), 3^(n-1) , 3^(n-1)],[ 3^(n-1) , 3^(n-1), 3^(n-1)]] n in N .

Using the principle of mathematical induction prove that : the 1.3+2.3^(2)+3.3^(3)++n.3^(n)=((2n-1)3^(n+1)+3)/(4) for all n in N.