Home
Class 9
MATHS
(" show that ")/(0)(x^(a-b))^((a+b))*(x^...

(" show that ")/(0)(x^(a-b))^((a+b))*(x^(b-y))^(b+c)*(x^((-q)))^((+a)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: (x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1{(x^(a)-a^((-1)))^((1)/(a-1))}^((a)/(a+1))=x

Show that (x^(a+b))^(a-b)times(x^(b+c))^(b-c)times(x^(c+a))^(c-a)=1

Show that: (i) (x^(a(b-c)))/(x^(b(a-c)))-:((x^b)/(x^a))^c=1,

Show that : (x^(a(b-c)))/(x^(b(a-c)))*(x^(b))/(x^(a)))^(c)=1((x^(a+b))^(2)(x^(b+c))(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(1/(a b))\ ((x^b)/(x^c))^(1/(b c))\ \ ((x^c)/(x^a))^(1/(a c))=1

((x^(a))/(x^(b)))^(a+b)*((x^(b))/(x^(c)))^(b+c)*((x^(c))/(x^(a)))^(c+a)=? a.0 b.x^(abc) c.x^(a+b+c)d.1=? a.0

Show that: (x^(a(b-c)))/(x^(b(a-c)))-:((x^(b))/(x^(a)))^(c)=1((x^(a+b))(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))=1

In each of the following cases show that (dy).(dx)=0 , when y = (x^(1/(c-a)))^(1/(b-a))xx(x^(1/(a-b)))^(1/(c-b))xx(x^(1/(b-c)))^(1/(a-c))

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b)^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)

(a) If x + y + z=0, show that x ^(3) + y ^(3) + z ^(3)= 3 xyz. (b) Show that (a-b) ^(3) + (b-c) ^(3) + (c-a)^(3) =3 (a-b) (b-c) (c-a)