Home
Class 11
MATHS
1+2+3+...............+n=(n(n+1))/(2)...

1+2+3+...............+n=(n(n+1))/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

1.2+2.3+3.4+.........+n(n+1)=(1)/(3)n(n+1)(n+3)

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Sum of series : 1+2+3+......... +n is (A) ((n)(n+1))/2 (B) n(n+1) (C) ((n+1)(n+2))/2 (D) none of these.

Using mathematical induction prove that 1/(1.2.3)+1/(2.3.4)+......+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2)) for all n in N .

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(2) +3^(2) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))