Home
Class 14
MATHS
tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6)...

tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Solve tan^(-1)x -"tan"^(-1)(1)/(4)=(pi)/(4) .

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4