Home
Class 11
MATHS
(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+............

(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+............+(1)/((3n-1)(3n+2))=(n)/((6n+4))

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2.5)+(1)/(5.8)+(1)/(8.11)+... n terms =(A)(n)/(6n+4) (B) (n)/(3n+2)(C)(n)/(4n+6)(D)(1)/(2(2n+3))

(1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

1.3+2.4+3.5+....+n(n+2)=(n(n+1)(2n+7))/(6)

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Prove that 1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)

Prove that 5^(n) (1+(n)/(5) +(n(n-1))/(5*10) +(n(n-1)(n-2))/(5*10*15)+…oo)=3^(n) (1+(n)/(2)+(n(n+1))/(2*4)+(n(n+1)(n+2))/(2*4*6)+…oo)