Home
Class 12
MATHS
tan^(-1)(1-x)/(1+x)=sin^(-1)(2x)/(1+x^(2...

tan^(-1)(1-x)/(1+x)=sin^(-1)(2x)/(1+x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

simplify 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))

Prove that 2tan^(-1)((1+x)/(1-x))+sin^(-1)((1-x^(2))/(1+x^(2)))=pi

The value of cos[2tan^(-1)(1+x)/(1-x)+sin^(-1)(1-x^(2))/(1+x^(2))] is

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

2 tan ^(-1)""(1+x)/(1-x)+sin ^(-1)""(1-x^(2))/(1+x^(2))

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))