Home
Class 11
MATHS
यदि श्रेणी (1(3)/(5))^(2)+(2(2)/(5))^(2)...

यदि श्रेणी `(1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)+.......,` के प्रथम दस पदों का योगफल `(16 )/(5 )m ` है, तब m का मान है :

Promotional Banner

Similar Questions

Explore conceptually related problems

If the sum of the first ten terms pf the series (1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)....., "is " (16)/(5)m ,then m is equal to

If the sum of the first ten terms of the series (1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)+.. is (16)/(5)m, then m is equal to: (1)102(2)101(3)100(4)99

यदि (x)/(y)=((3)/(2))^(2)div ((5)/(7))^(0) , तब ((y)/(x))^(2) का मान क्या होगा -

If the surm of the first ten terms of the series,(1(3)/(5))^(2)+(2(2)/(5))^(2)+(3(1)/(5))^(2)+4^(2)+(4(4)/(5))^(2)+ is (16)/(5)m, then m is equal to

यदि 25 ^(-2x) = ( 5 ^((48)/(2)))/(5 ^((26)/(2)). 25 ^((19)/(2)) है तब x = ?

3(1)/(12)-[1(3)/(4)+{2(1)/(2)-(1(1)/(2)-(1)/(3))}] का मान है -

[{(3^((5)/(2))xx5^((3)/(4))-:2^(-(5)/(4))}-:{16-:(^(-2xx2^((1)/(4))xx3^((1)/(2))}]^((1)/(5)))

Simplify: (2)/(3)m-(4)/(5)n+(3)/(5)p+(-(3)/(4)m-(5)/(2)n+(2)/(3)p)+((5)/(2)m+(3)/(4)p-(5)/(6)n)

If the surm of the first ten terms of the series, (1 3/5)^2+(2 2/5)^2+(3 1/5)^2+4^2+(4 4/5)^2+........ , is 16/5m ,then m is equal to