Home
Class 12
MATHS
prod(r=1)^4(2sin(rpi)/5) is twin prime w...

`prod_(r=1)^4(2sin(rpi)/5)` is twin prime with

Promotional Banner

Similar Questions

Explore conceptually related problems

prod_(r=1)^(4)(2(sin(r pi))/(5)) is twin prime with

Let f(n)=prod_(r=1)^(n)sin(r), where r is in radians, then

Let f(n)=prod_(r=1)^(n) sin(r), where r is in radians, then

The continued product 16prod_(r=1)^(4)sin backslash(r pi)/(9) is equal to

If lim_(n rarr oo)(prod_(r=1)^(n)sin((r pi)/(4n))cos((r pi)/(4n)))^((1)/(n))=(a)/(b) a,b in N then find the least value of (a+b)

sum_(r=0)^(n) sin^(2)""(rpi)/(n) is equal to

If a_r=(cos2rpi+is in2rpi)^(1//9) , then prove that |a_1a_2a_3a_4a_5a_6a_7a_8a_9|=0.

If a_r=(cos2rpi+is in2rpi)^(1//9) , then prove that |a_1a_2a_3a_4a_5a_6a_7a_8a_9|=0.

If a_r=(cos2rpi+i sin 2rpi)^(1//9) , then prove that |[a_1,a_2,a_3],[a_4,a_5,a_6],[a_7,a_8,a_9]|=0 .

The value of sum_(r=1)^(8)(sin((2rpi)/9)+icos((2rpi)/9)) , is