Home
Class 12
MATHS
Consider two statements S1:~p to (~q i...

Consider two statements
`S_1:~p to (~q implies~p)` is a tautology
`S_2:(~q^^p) to q` is a fallacy then

A

Statement I is true,statement II is false

B

Statement I is false ,statement II is true

C

Both true

D

Both false

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two statements \( S_1 \) and \( S_2 \) given in the question. ### Statement Analysis 1. **Statement \( S_1: \neg p \to (\neg q \to \neg p) \) is a tautology.** 2. **Statement \( S_2: (\neg q \land p) \to q \) is a fallacy.** ### Step 1: Analyze Statement \( S_1 \) We need to check if \( S_1 \) is a tautology. A statement is a tautology if it evaluates to true for all possible truth values of its variables. **Construct the truth table for \( S_1 \):** | \( p \) | \( q \) | \( \neg p \) | \( \neg q \) | \( \neg q \to \neg p \) | \( \neg p \to (\neg q \to \neg p) \) | |---------|---------|---------------|---------------|--------------------------|-------------------------------------| | T | T | F | F | T | T | | T | F | F | T | F | T | | F | T | T | F | T | T | | F | F | T | T | T | T | **Evaluate the last column:** - The last column shows that \( S_1 \) evaluates to true for all combinations of truth values for \( p \) and \( q \). Therefore, \( S_1 \) is indeed a tautology. ### Step 2: Analyze Statement \( S_2 \) Now we need to check if \( S_2 \) is a fallacy. A statement is a fallacy if it evaluates to false for all possible truth values of its variables. **Construct the truth table for \( S_2 \):** | \( p \) | \( q \) | \( \neg q \) | \( \neg q \land p \) | \( (\neg q \land p) \to q \) | |---------|---------|---------------|------------------------|--------------------------------| | T | T | F | F | T | | T | F | T | T | F | | F | T | F | F | T | | F | F | T | F | T | **Evaluate the last column:** - The last column shows that \( S_2 \) is false only when \( p \) is true and \( q \) is false. Therefore, \( S_2 \) is not a fallacy since it does not evaluate to false for all combinations of truth values. ### Conclusion - \( S_1 \) is a tautology (true for all cases). - \( S_2 \) is not a fallacy (it is true in some cases). Thus, the final answer is that both statements are false.
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the two statements : (S1) : (p to q) vv ( ~ q to p) is a tautology (S2) : (p wedge ~q) wedge ( ~p vv q) is a fallacy Then :

Verify that the statement P vee ~( p ^^ q) is a tautology.

The statement (p ^^q) implies ~p is a

Given the following two statements S_(1) : (p ^^ : p) rarr (p ^^ q) is a tautology. S_(2) : (p vv : p) rarr (p vv q) is a fallacy

The statement p implies ~ (p ^^ ~ q) is -

Let p and q be two statements, then (p vv q)vv ~p is

The logical statement (~ q implies ~p ) vv (~ q implies p) is equivalent to :