Home
Class 11
MATHS
Prove that log(ab)(x)=((loga(x))(logb(x)...

Prove that `log_(ab)(x)=((log_a(x))(log_b(x)))/(log_a(x)+log_b(x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that m^(log_(a)x)=x^(log_(a)m)

Prove that (log_ab x)/(log_a x)=1+log_x b

Prove that log_(a)xy=log_(a)x+log_(a)y.

Prove that: (log_a(log_ba))/(log_b(log_ab))=-log_ab

Prove that log_a x+log_(1/a) x=0

Prove that: log_(a)x xx log_(b)y=log_(b)x xx log_(a)y

Prove that log_a (ab)+log_b (ab)=log_a (ab).log_b (ab)

Prove that: log_(a)x=log_(b)x xx log_(c)b xx...xx log_(n)m xx log_(a)n

Prove that 1/(log_(a/b) x)+1/(log_(b/c) x)+1/(log_(c/a) x)=0

Prove log_(b)b^(x)=x