Home
Class 11
MATHS
Solve for x log5 120 + (x - 3) - 2*log5...

Solve for `x` `log_5 120 + (x - 3) - 2*log_5 (1- 5^(x - 3)) = - log_5 (0.2 - 5^(x-4)) `

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(5)120+(x-3)-2*log_(5)(1-5^(x-3))=-log(0.2-5^(x-4))

Solve for x : (i) log_(10) (x - 10) = 1 (ii) log (x^(2) - 21) = 2 (iii) log(x - 2) + log(x + 2) = log 5 (iv) log(x + 5) + log(x - 5) = 4 log 2 + 2 log 3

log_5 ((2+x)/10)=log_5 (2/(x+1))

Solve for x, log_(x) 15 sqrt(5) = 2 - log_(x) 3 sqrt(5) .

Solve log_5(5^(1/x)+125)= log_5 6+1+1/(2)x .

If 3(log 5 - log 3) - (log 5 - 2 log 6) = 2 - log x, find x.

Solve for x:log_(5)(5^(1//x)+125)=log_(5)6+1+1//2x

If log_5(5^(1/x)+125)=log_5 6+1+1/(2x) , then x =

Solve for x: a) log_(x)2. log_(2x)2 = log_(4x)2 b) 5^(logx)+5x^(log5)=3(a gt 0), where base of log is 3.