Home
Class 11
MATHS
" (18."" If "cos x+cos^(2)x=1," prove th...

" (18."" If "cos x+cos^(2)x=1," prove that "sin^(2)x+sin^(4)x=1

Promotional Banner

Similar Questions

Explore conceptually related problems

cos x+cos^(2)x=1 then sin^(8)x+2sin^(6)x+sin^(4)x=

If sin x+cos x=a, then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2) where a^(2)<=2

If sin x+sin^(2)=1, then cos^(8)x+2cos^(6)x+cos^(4)x=

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : cos (2 sin^(-1) x) = 1-2x^2

If sin x+cos x=a then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2), where a^(2)<=2

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

If sin x + sin^2 x = 1 , show that : cos^4 x+ cos^2 x=1 .

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .