Home
Class 11
MATHS
a,b,c are positive real numbers such tha...

a,b,c are positive real numbers such that `loga(b-c)=logb/(c-a)=logc/(a-b)` then prove that (1) `a^(b+c)+b^(c+a)+c(a+b)gt=3` (2)`a^a+b^b+c^cgt=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (loga)/(b-c) = (logb)/(c-a) = (logc)/(a-b) , then prove that a^(a)b^(b)c^(c)=1 .

if loga/(b-c)=logb/(c-a)=logc/(a-b) then find the value of a^ab^bc^c

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If loga/(b-c) = logb/(c-a) = logc/(a-b) , then a^(b+c).b^(c+a).c^(a+b) =

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a,b,c are positive real numbers such that a+b+c=1, then prove that (a)/(b+c)+(b)/(c+a)+(c)/(a+b)>=(3)/(2)

If a, b, c are positive real numbers such that (a+b-c)/c = (a-b+c)/b = (-a+b+c)/a ,find the value of ((a+b)(b+c)(c+a))/(abc)