Home
Class 12
MATHS
" (i) "log(e)tan^(-1)x...

" (i) "log_(e)tan^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

For real numbers alpha, beta, gamma and delta , if int((x^(2)-1)+tan^(-1)((x^(2)+1)/(x)))/((x^(4)+3x^(2)+1)tan^(-1)((x^(2)+1)/(x)))dx = alpha log_(e)(tan^(-1)((x^(2)+1)/(x)))+beta "tan"^(-1)((gamma(x^(2)-1))/(x))+delta tan ((x^(2)+1)/(x))+C where is an arbitrary constant, then the value of 10(alpha+betagamma+delta) is equal to........

Find the number of roots of the equation log_(e)(1+x)-(tan^(-1)x)/(1+x)=0

Find the number of roots of the equation log_(e)(1+x)-(tan^(-1)x)/(1+x)=0

Find the number of roots of the equation log_(e)(1+x)-(tan^(-1)x)/(1+x)=0

y=log_(e)(tan^(-1)sqrt(1+x^(2))) then (dy)/(dx) is

Integration of (1)/(1+((log)_(e)x)^(2)) with respect to (log)_(e)x is ((tan^(-1)((log)_(e)x))/(x)+C(b)tan^(-1)((log)_(e)x)+C(c)(tan^(-1)x)/(x)+C(d) none of these

The value of e^(log_(e)){tan(2tan^(-1)((1)/(5))-(pi)/(4))}

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is

y=log_e(tan^(- 1)sqrt(1+x^2)) then dy/dx is