Home
Class 11
MATHS
" (i) "tan^(2)x-sin^(2)x=tan^(2)x sin^(2...

" (i) "tan^(2)x-sin^(2)x=tan^(2)x sin^(2)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement:1 sinx =1/p rArr tanx =1/sqrt(p^(2)-1), p ne 1 . Statement-2: cosx = x^(3)+ 3/x, x gt 0 has no solution in R. Statement-3: tan^(2)x - sin^(2)x = tan^(2)x. sin^(2)x, x in R

Statement:1 sinx =1/p rArr tanx =1/sqrt(p^(2)-1), p ne 1 . Statement-2: cosx = x^(3)+ 3/x, x gt 0 has no solution in R. Statement-3: tan^(2)x - sin^(2)x = tan^(2)x. sin^(2)x, x in R

sin (tan ^(-1)2x)

sin (tan ^(-1)2x)

The common roots of the equations 2 sin^(2) x + sin ^(2)2 x = 2 and sin 2 x + cos 2 x = tan x is

Show that cos 2 x=cos ^(2) x-sin ^(2) x=2 cos ^(2) x-1=1-2 sin ^(2) x=(1-tan ^(2) x)/(1+tan ^(2) x)

If sin(x+y).sec(x-y)=1 then tan^(2)x+sin^(2)x+sec^(2)x=?

int(sin^(2)x*sec^(2)x+2tan x*sin^(-1)x*sqrt(1-x^(2)))/(sqrt(1-x^(2))(1+tan^(2)x))dx

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

Simplify 2"tan"^(-1)x+"sin"^(-1)((2x)/(1+x^(2))) in terms of "tan"^(-1)x .