Home
Class 12
MATHS
The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^...

The value of `i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3),` where `i=sqrt(-1),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N.

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt(-1) and n in N .

Value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)("when" i=sqrt(-1))-

Value of i^n+i^(n+1)+i^(n+2)+i^(n+3) (where i=sqrt-1 )

Find the value of 1+i^(2)+i^(4)+i^(6)+...+i^(2n), where i=sqrt-1 and nEN.

1 + i^(2n) + i^(4n) + i^(6n)

What is the value of the sum sum_(n=2)^(11) (i^(n)+i^(n+1)), where i=sqrt(-1)?

The value of the sum sum_(n=1) ^(13) (i^(n)+i^(n+1)) , where i = sqrt( - 1) ,equals :