Home
Class 12
MATHS
If lim(t rarr x)(x^2f^2(t)-t^2f^2(x))/(t...

If `lim_(t rarr x)(x^2f^2(t)-t^2f^2(x))/(t-x)=0` and `f(1)=e` then solution of `f(x)=1` is

A

`1/e`

B

`1/(2e)`

C

`e`

D

`2e`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t rarr x)(t^(2)f(x)-x^(2)f(t))/(t-x)=1 for each x>0 Then f(x)=

If lim_(t rarr x)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 and f(0)=(1)/(2), then find the value of f'(0)*4(b)2(c)0(d)1

If f(x)=1+3int_(0)^(x)t^(2)f(t)dt, then the number of solution of f(x)=x^(2)+1 is