Home
Class 12
MATHS
Minimum value of 2^(sinx)+2^(cosx) is...

Minimum value of `2^(sinx)+2^(cosx)` is

A

`2^(1-1/sqrt(2))`

B

`2^(1+1/sqrt(2))`

C

`2^(1+sqrt(2))`

D

`2^(1-sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(2^{\sin x} + 2^{\cos x}\), we can use the properties of exponential functions and inequalities. ### Step-by-Step Solution: 1. **Define the Variables**: Let \(a = 2^{\sin x}\) and \(b = 2^{\cos x}\). We need to find the minimum value of \(a + b\). 2. **Apply the AM-GM Inequality**: By the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we know that: \[ \frac{a + b}{2} \geq \sqrt{ab} \] Therefore, we can write: \[ a + b \geq 2\sqrt{ab} \] 3. **Calculate \(ab\)**: We have: \[ ab = 2^{\sin x} \cdot 2^{\cos x} = 2^{\sin x + \cos x} \] 4. **Find the Maximum of \(\sin x + \cos x\)**: The maximum value of \(\sin x + \cos x\) can be found using the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, the maximum value of \(\sin x + \cos x\) is \(\sqrt{2}\). 5. **Substitute Back**: Therefore, the maximum value of \(ab\) is: \[ ab \leq 2^{\sqrt{2}} \] 6. **Use the AM-GM Result**: From the AM-GM inequality, we have: \[ a + b \geq 2\sqrt{2^{\sqrt{2}}} = 2^{1 + \frac{\sqrt{2}}{2}} \] 7. **Calculate the Minimum Value**: The minimum value of \(2^{\sin x} + 2^{\cos x}\) is thus: \[ 2^{1 - \frac{1}{\sqrt{2}}} \] ### Conclusion: The minimum value of \(2^{\sin x} + 2^{\cos x}\) is: \[ \boxed{2^{1 - \frac{1}{\sqrt{2}}}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

find least value of 2^sinx +2^cosx

The least value of 2^(sinx)+2^(cosx) , is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

The minimum value of |sinx+cosx+(cosx+sinx)/(cos^(4)x-sin^(4)x)| is

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

Show that The maximum value of sinx. cosx in R is 1/2

The maximum values of sinx(1+cosx) will be at the

If sinx-cosx=1,where'x'is an acute angle,the value of (sinx+cosx) is: