Home
Class 12
MATHS
If veca=2hati+hatj+2hatk then the value ...

If `veca=2hati+hatj+2hatk` then the value of `|hati xx(veca xxhati)|^2+|hatj xx(veca xx hatj)|^2+|hatk xx(veca xx hatk)|^2` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to compute the expression: \[ | \hat{i} \times (\vec{a} \times \hat{i}) |^2 + | \hat{j} \times (\vec{a} \times \hat{j}) |^2 + | \hat{k} \times (\vec{a} \times \hat{k}) |^2 \] where \(\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}\). ### Step 1: Calculate \(\vec{a} \times \hat{i}\) Using the formula for the cross product, we have: \[ \vec{a} \times \hat{i} = (2\hat{i} + \hat{j} + 2\hat{k}) \times \hat{i} \] Calculating this, we get: \[ \vec{a} \times \hat{i} = \hat{j} \times \hat{i} + 2\hat{k} \times \hat{i} = -\hat{k} + 2(-\hat{j}) = -\hat{k} - 2\hat{j} \] ### Step 2: Calculate \(\hat{i} \times (\vec{a} \times \hat{i})\) Now we need to compute: \[ \hat{i} \times (\vec{a} \times \hat{i}) = \hat{i} \times (-\hat{k} - 2\hat{j}) \] Using the distributive property of the cross product: \[ \hat{i} \times (-\hat{k}) + \hat{i} \times (-2\hat{j}) = -\hat{i} \times \hat{k} - 2\hat{i} \times \hat{j} = -(-\hat{j}) - 2\hat{k} = \hat{j} - 2\hat{k} \] ### Step 3: Calculate the magnitude squared Now we calculate the magnitude squared: \[ | \hat{i} \times (\vec{a} \times \hat{i}) |^2 = | \hat{j} - 2\hat{k} |^2 = 1^2 + (-2)^2 = 1 + 4 = 5 \] ### Step 4: Calculate \(\vec{a} \times \hat{j}\) Next, we compute: \[ \vec{a} \times \hat{j} = (2\hat{i} + \hat{j} + 2\hat{k}) \times \hat{j} \] Calculating this, we get: \[ \vec{a} \times \hat{j} = 2\hat{i} \times \hat{j} + 2\hat{k} \times \hat{j} = 2\hat{k} - 2\hat{i} \] ### Step 5: Calculate \(\hat{j} \times (\vec{a} \times \hat{j})\) Now we compute: \[ \hat{j} \times (\vec{a} \times \hat{j}) = \hat{j} \times (2\hat{k} - 2\hat{i}) = 2(\hat{j} \times \hat{k}) - 2(\hat{j} \times \hat{i}) = 2(-\hat{i}) - 2\hat{k} = -2\hat{i} - 2\hat{k} \] ### Step 6: Calculate the magnitude squared Now we calculate the magnitude squared: \[ | \hat{j} \times (\vec{a} \times \hat{j}) |^2 = | -2\hat{i} - 2\hat{k} |^2 = (-2)^2 + 0^2 + (-2)^2 = 4 + 0 + 4 = 8 \] ### Step 7: Calculate \(\vec{a} \times \hat{k}\) Next, we compute: \[ \vec{a} \times \hat{k} = (2\hat{i} + \hat{j} + 2\hat{k}) \times \hat{k} \] Calculating this, we get: \[ \vec{a} \times \hat{k} = 2\hat{i} \times \hat{k} + \hat{j} \times \hat{k} = -2\hat{j} + \hat{i} \] ### Step 8: Calculate \(\hat{k} \times (\vec{a} \times \hat{k})\) Now we compute: \[ \hat{k} \times (\vec{a} \times \hat{k}) = \hat{k} \times (-2\hat{j} + \hat{i}) = -2(\hat{k} \times \hat{j}) + \hat{k} \times \hat{i} = -2(-\hat{i}) + \hat{j} = 2\hat{i} + \hat{j} \] ### Step 9: Calculate the magnitude squared Now we calculate the magnitude squared: \[ | \hat{k} \times (\vec{a} \times \hat{k}) |^2 = | 2\hat{i} + \hat{j} |^2 = 2^2 + 1^2 = 4 + 1 = 5 \] ### Step 10: Combine all the results Finally, we combine all the results: \[ | \hat{i} \times (\vec{a} \times \hat{i}) |^2 + | \hat{j} \times (\vec{a} \times \hat{j}) |^2 + | \hat{k} \times (\vec{a} \times \hat{k}) |^2 = 5 + 8 + 5 = 18 \] Thus, the value of the expression is: \[ \boxed{18} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If hati , hatj , hatk are units vectors and |veca| = a , then the value of | hati xx |veca|"|"^2 + |hatj xx |veca|"|"^2 +| hatk xx |veca|"|"^2 is :

Find the value of |(hati+hatj)xx(hati+2hatj+hatk)|

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

(veca hati)hati + (veca hatj)hatj + (veca hatk) hatk is value of :

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca = hati+hatj-2hatk, vecb=2hati-3hatj+hatk the value of (2veca+3vecb) . (2vecbxx3veca) is :

If veca=2hati-3hatj+4hatk, veca.vecb=2 and veca xx vecb=hati+2hatj+hatk , then vecb is equal to

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk then value of |vecAxxvecB| will be

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|