Home
Class 12
MATHS
int0^n {x}dx,int0^n[x]dx and 10(n^2-n) a...

`int_0^n {x}dx,int_0^n[x]dx` and `10(n^2-n)` are in Geometric progression, where {x}&[x] represents fraction function and greatest integral function respectively,find n if `n in N` and `n gt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals and set up the geometric progression condition. Let's break it down step by step. ### Step 1: Evaluate the integral \(\int_0^n \{x\} \, dx\) The fractional part function \(\{x\}\) can be expressed as: - For \(x\) in the interval \([k, k+1)\), \(\{x\} = x - k\). Thus, we can break the integral into intervals: \[ \int_0^n \{x\} \, dx = \sum_{k=0}^{n-1} \int_k^{k+1} (x - k) \, dx \] Calculating the integral for each interval: \[ \int_k^{k+1} (x - k) \, dx = \int_k^{k+1} x \, dx - \int_k^{k+1} k \, dx \] \[ = \left[ \frac{x^2}{2} \right]_k^{k+1} - k \left[ x \right]_k^{k+1} \] \[ = \left( \frac{(k+1)^2}{2} - \frac{k^2}{2} \right) - k \left( (k+1) - k \right) \] \[ = \left( \frac{(k^2 + 2k + 1) - k^2}{2} \right) - k \] \[ = \left( \frac{2k + 1}{2} \right) - k = \frac{1}{2} \] Thus, for \(n\) intervals: \[ \int_0^n \{x\} \, dx = n \cdot \frac{1}{2} = \frac{n}{2} \] ### Step 2: Evaluate the integral \(\int_0^n [x] \, dx\) The greatest integral function \([x]\) can be expressed as: \[ \int_0^n [x] \, dx = \sum_{k=0}^{n-1} \int_k^{k+1} k \, dx \] Calculating the integral for each interval: \[ \int_k^{k+1} k \, dx = k \left[ x \right]_k^{k+1} = k \cdot (k+1 - k) = k \] Thus, for \(n\) intervals: \[ \int_0^n [x] \, dx = \sum_{k=0}^{n-1} k = \frac{(n-1)n}{2} \] ### Step 3: Set up the geometric progression condition We have established that: - First term \(A = \frac{n}{2}\) - Second term \(B = \frac{(n-1)n}{2}\) - Third term \(C = 10(n^2 - n)\) For these to be in geometric progression, we need: \[ B^2 = A \cdot C \] Substituting the values: \[ \left( \frac{(n-1)n}{2} \right)^2 = \frac{n}{2} \cdot 10(n^2 - n) \] Simplifying both sides: \[ \frac{(n-1)^2 n^2}{4} = 5n(n^2 - n) \] Multiplying through by 4 to eliminate the fraction: \[ (n-1)^2 n^2 = 20n(n^2 - n) \] Expanding both sides: \[ (n^2 - 2n + 1)n^2 = 20n^3 - 20n^2 \] \[ n^4 - 2n^3 + n^2 = 20n^3 - 20n^2 \] Rearranging gives: \[ n^4 - 22n^3 + 21n^2 = 0 \] Factoring out \(n^2\): \[ n^2(n^2 - 22n + 21) = 0 \] This gives \(n^2 = 0\) or \(n^2 - 22n + 21 = 0\). ### Step 4: Solve the quadratic equation Using the quadratic formula: \[ n = \frac{22 \pm \sqrt{22^2 - 4 \cdot 1 \cdot 21}}{2 \cdot 1} = \frac{22 \pm \sqrt{484 - 84}}{2} = \frac{22 \pm \sqrt{400}}{2} = \frac{22 \pm 20}{2} \] This gives: \[ n = \frac{42}{2} = 21 \quad \text{or} \quad n = \frac{2}{2} = 1 \] ### Step 5: Final answer Since \(n\) must be a natural number greater than 1, we have: \[ \boxed{21} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(a)[x^(n)]dx, (where,[*] denotes the greatest integer function).

If n in N , the value of int_(0)^(n) [x] dx (where [x] is the greatest integer function) is

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1{x}dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^2[x]dx

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^2x[x]dx

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^(15)[x]dx

int_(-n)^(n)(-1)^([x])backslash dx when n in N= in all of these [.] denotes the greatest integer function

If [dot]a n d\ {dot} denote respectively the greatest integer and fractional part functional respectively, evaluate the following integral: int_0^1 2^(x-[x])dx

Evaluate: int_(0)^(x)[cos t]dt where x in(2n pi,4n+1(pi)/(2)),n in N, and.] denotes the greatest integer function.