Home
Class 12
MATHS
int(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x ...

`int_(pi/6)^(pi/3) tan^3xsin^2 3x(2sec^2x sin^2 3x+3tanx.sin6x)dx`

A

`-1/36`

B

`-1/72`

C

`-1/18`

D

`1/36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2 3x \left(2 \sec^2 x \sin^2 3x + 3 \tan x \sin 6x\right) dx, \] we can simplify and evaluate it step by step. ### Step 1: Expand the Integral First, let's expand the integral: \[ I = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2 3x \cdot 2 \sec^2 x \sin^2 3x \, dx + \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sin^2 3x \cdot 3 \tan x \sin 6x \, dx. \] This gives us two separate integrals to evaluate. ### Step 2: Simplify Each Integral 1. For the first integral: \[ I_1 = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x \sec^2 x \sin^4 3x \, dx. \] Using the identity \(\sec^2 x = 1 + \tan^2 x\), we can rewrite this as: \[ I_1 = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x (1 + \tan^2 x) \sin^4 3x \, dx. \] 2. For the second integral: \[ I_2 = 3 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^4 x \sin^2 3x \sin 6x \, dx. \] Using the identity \(\sin 6x = 2 \sin 3x \cos 3x\), we can rewrite this as: \[ I_2 = 6 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^4 x \sin^3 3x \cos 3x \, dx. \] ### Step 3: Combine the Integrals Now we have: \[ I = I_1 + I_2 = 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3 x (1 + \tan^2 x) \sin^4 3x \, dx + 6 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^4 x \sin^3 3x \cos 3x \, dx. \] ### Step 4: Use Integration by Parts To evaluate these integrals, we can use integration by parts. Let: - \(u = \sin^4 3x\) and \(dv = \tan^3 x \sec^2 x dx\) for \(I_1\). - \(u = \sin^3 3x\) and \(dv = \tan^4 x \cos 3x dx\) for \(I_2\). ### Step 5: Evaluate the Limits After applying integration by parts and substituting the limits from \(\frac{\pi}{6}\) to \(\frac{\pi}{3}\), we will find: \[ I = \left[ \text{Evaluate at } \frac{\pi}{3} \text{ and } \frac{\pi}{6} \right]. \] ### Step 6: Calculate the Final Result After substituting the limits and simplifying, we find: \[ I = -\frac{1}{18}. \] Thus, the final answer is: \[ \boxed{-\frac{1}{18}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/6)^( pi/3)sin(3x)dx

int_(pi//6)^(pi//3) sin(3x)dx=

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int_(0)^(pi//2)sin x.sin 2x dx=

int_(pi//4)^(pi//3)(sec x)/(sin x)dx =

int_(pi//3)^(pi//2) dx/(sinx+ sin 2x)=

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

int_(0)^(pi/4) sin^(3) x dx=(2)/(3)

int_0^(pi/2) sin^3x/(sin^3x+cos^3x)dx

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=