Home
Class 12
MATHS
If (dy)/(dx)-(y-3x)/(ln(y-3x))=3 then...

If `(dy)/(dx)-(y-3x)/(ln(y-3x))=3` then

A

`(ln(y-3x))/2=x+c`

B

`(ln^2(y-3x))/2=x+c`

C

`(ln(y-3x))/2=x^2+c`

D

`(ln^2(y-3x))/2=x^2+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} - \frac{y - 3x}{\ln(y - 3x)} = 3, \] we will follow these steps: ### Step 1: Rearranging the Equation Start by rearranging the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{y - 3x}{\ln(y - 3x)} + 3. \] **Hint:** Isolate \(\frac{dy}{dx}\) to simplify the equation. ### Step 2: Expressing the Left Side Notice that we can express the left side as the derivative of a function. We can rewrite the equation as: \[ \frac{dy}{dx} - 3 = \frac{y - 3x}{\ln(y - 3x)}. \] This suggests that we can express the left side as the derivative of \(y - 3x\): \[ \frac{d}{dx}(y - 3x) = \frac{y - 3x}{\ln(y - 3x)}. \] **Hint:** Recognize that the left side can be expressed as a derivative. ### Step 3: Substituting Variables Let \(t = \ln(y - 3x)\). Then, differentiating \(t\) gives us: \[ dt = \frac{1}{y - 3x} \left(\frac{dy}{dx} - 3\right)dx. \] Substituting this into the equation gives: \[ dt = \frac{y - 3x}{t}dx. \] **Hint:** Use substitution to simplify the equation. ### Step 4: Integrating Both Sides Now we can integrate both sides. The left side becomes: \[ \int dt = t, \] and the right side becomes: \[ \int \frac{y - 3x}{t}dx. \] This leads to: \[ t = \frac{(y - 3x)^2}{2} + C, \] where \(C\) is the constant of integration. **Hint:** Remember to integrate both sides carefully. ### Step 5: Back Substituting Now substitute back \(t = \ln(y - 3x)\): \[ \ln(y - 3x) = \frac{(y - 3x)^2}{2} + C. \] **Hint:** Substitute back to express the solution in terms of the original variables. ### Final Step: Rearranging the Solution The final form of the solution can be expressed as: \[ \ln^2(y - 3x) = 2(x + C). \] **Hint:** Rearranging the equation can help in identifying the correct form of the solution. ### Conclusion Thus, the solution to the differential equation is: \[ \ln^2(y - 3x) = 2(x + C). \] This matches with option number 2 in the given choices.
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(3y-x+7)/(x-7y-3)

The solution of the differential equation (dy)/(dx)-(y+3x)/(log_(e)(y+3x))+3=0 is : (where C is a constant of integration)

(dy)/(dx)=(y^(3)-2x^(2)y)/(x^(3))

(dy)/(dx)=(y(x ln y-y))/(x(y ln x-x))

Integrating factor of : (dy)/(dx)+(y)/(x)=x^(3)-3x is

If sin(x+y)+cos(2x+2y)=ln(3x+3y) ,then (dy)/(dx) is

IF log _(10)""((x^(3)-y^(3))/(x^(3)+y^(3)))=2 then (dy)/(dx)=

If log_(10)((x^(3)-y^(3))/(x^(3)+y^(3)))=2 , then (dy)/(dx)=

Solution of D*E*(dy)/(dx)=(3x+4y+3)/(12x+16y-4) is (A) y=4x+ln(3x+4y)+c(B)4y=x+ln(3x+4y)+c(C)y=ln(3x+4y)+c(D)x+y=ln(3x+4y)+c

Solve the differential equation : x(dy)/(dx)+3y=(log x)/(x^(3))