Home
Class 12
MATHS
Let A is 3 xx 3 matrix such that Ax1=B1,...

Let `A` is `3 xx 3` matrix such that `Ax_1=B_1,Ax_2=B_2,Ax_3=B_3` where
`x_1=[[1],[1],[1]],x_2=[[0],[2],[1]],x_3=[[0],[0],[1]]` ,br> `B_1=[[1],[0],[0]],B_2=[[0],[2],[0]],B_3=[[0],[0],[2]]` then find `|A|`.

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A \) given the equations \( Ax_1 = B_1 \), \( Ax_2 = B_2 \), and \( Ax_3 = B_3 \), we will follow these steps: ### Step 1: Define the Matrix \( A \) Assume the matrix \( A \) is given by: \[ A = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix} \] ### Step 2: Set Up the Equations Using the equations provided: 1. \( Ax_1 = B_1 \) - \( A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) - This gives us: \[ \begin{aligned} a_1 + a_2 + a_3 &= 1 \quad (1) \\ a_4 + a_5 + a_6 &= 0 \quad (2) \\ a_7 + a_8 + a_9 &= 0 \quad (3) \end{aligned} \] 2. \( Ax_2 = B_2 \) - \( A \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \) - This gives us: \[ \begin{aligned} 0 \cdot a_1 + 2a_2 + a_3 &= 0 \quad (4) \\ 0 \cdot a_4 + 2a_5 + a_6 &= 2 \quad (5) \\ 0 \cdot a_7 + 2a_8 + a_9 &= 0 \quad (6) \end{aligned} \] 3. \( Ax_3 = B_3 \) - \( A \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} \) - This gives us: \[ \begin{aligned} 0 \cdot a_1 + 0 \cdot a_2 + a_3 &= 0 \quad (7) \\ 0 \cdot a_4 + 0 \cdot a_5 + a_6 &= 0 \quad (8) \\ 0 \cdot a_7 + 0 \cdot a_8 + a_9 &= 2 \quad (9) \end{aligned} \] ### Step 3: Solve the Equations From equation (7), we have: \[ a_3 = 0 \] From equation (8): \[ a_6 = 0 \] From equation (9): \[ a_9 = 2 \] Substituting \( a_3 = 0 \) into equation (1): \[ a_1 + a_2 + 0 = 1 \implies a_1 + a_2 = 1 \quad (10) \] Substituting \( a_6 = 0 \) into equation (5): \[ 2a_5 + 0 = 2 \implies a_5 = 1 \] Substituting \( a_5 = 1 \) into equation (2): \[ a_4 + 1 + 0 = 0 \implies a_4 = -1 \] Substituting \( a_9 = 2 \) into equation (3): \[ a_7 + a_8 + 2 = 0 \implies a_7 + a_8 = -2 \quad (11) \] Using equation (6) with \( a_9 = 2 \): \[ 2a_8 + 2 = 0 \implies a_8 = -1 \] Substituting \( a_8 = -1 \) into equation (11): \[ a_7 - 1 = -2 \implies a_7 = -1 \] ### Step 4: Construct Matrix \( A \) Now we have: \[ \begin{aligned} a_1 &= 1 \\ a_2 &= 0 \\ a_3 &= 0 \\ a_4 &= -1 \\ a_5 &= 1 \\ a_6 &= 0 \\ a_7 &= -1 \\ a_8 &= -1 \\ a_9 &= 2 \end{aligned} \] Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 2 \end{pmatrix} \] ### Step 5: Calculate the Determinant of \( A \) To find the determinant of \( A \): \[ |A| = 1 \cdot \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} - 0 + 0 \] Calculating the 2x2 determinant: \[ \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = (1)(2) - (0)(-1) = 2 \] Thus, \[ |A| = 1 \cdot 2 = 2 \] ### Final Answer The determinant of matrix \( A \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find a matrix X such that A+2B+X=0 where A= [[2,-1],[3,5]], B[[-1,1],[0,2]]

Find a matrix X such tht 3A-2B+X=0, where A=[[4,2],[1,3]] , B= [[-2,1], [3,2]]

If A=[[3,2,-1],[2,-2,0],[1,3,1]],B=[[-3,-1,0],[2,1,3],[4,-1,2]] and X=A+B then find X

Find a matrix X such that 2A + B + X =0 where A = [[-1,2],[3,4]] and B = [[3,-2],[1,5]]

If A=[[-2, 0, 0], [-2, -1, 3]], B=[[0, 1], [2, 3], [1, -1]] , then

If A=[[1/3,2],[0,2x-3]] , B=[[3,6],[0,-1]] and AB=I ,then x=

If A=[[1, 2], [-1, 3]], B=[[0, 1], [2, 4]] and AX=B , then X=

If A=[[3,0],[0,4]],B=[[2],[1]] , then find matrix X such that A^(-1)X=B

find the matrix X such that AX=B where A=det[[1,2-1,3]],B=det[[0,12,4]]

If A=[[x,2,3],[-1,5,3]] , B=[[1,-2,y],[1,z,-2]] and C=[[3,0,1],[0,2,1]] , also A+B-C=O then find x,y,z