Home
Class 11
MATHS
In A B C ,(a+b+c)(b+c-a)=k b c if k<0 ...

In ` A B C ,(a+b+c)(b+c-a)=k b c` if `k<0` (b) `k >0` `=4`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C ,(a+b+c)(b+c-a)=k b c if k 0 = 4

In A B C ,(a+b+c)(b+c-a)=k b c if k 0 = 4

In A B C ,(a+b+c)(b+c-a)=k b c if k 0 = 4

If in a triangle ABC,(a+b+c)(b+c-a)=k.bc, then :k 6c.0 4

The value of the determinant |(ka,k^(2)+a^(2),1),(kb,k^(2)+b^(2),1),(kc,k^(2)+c^(2),1)| is a)k(a+b)(b+c)(c+a) b)kabc (a^(2)+b^(2)+c^(2)) c)k(a-b) (b -c) (c - a) d)k(a + b - c) (b + c - a) (c + a - b)

If |b+c c+a a+b a+b b+c c+a c+a a+b b+c|=k|ab c c a b b c a| , then value of k is 1 b. 2 c. 3 d. 4

The value of the determinant |k a k^2+a^2 1k b k^2+b^2 1k c k^2+c^2 1| is k(a+b)(b+c)(c+a) k a b c(a^2+b^(f2)+c^2) k(a-b)(b-c)(c-a) k(a+b-c)(b+c-a)(c+a-b)