Home
Class 11
MATHS
If a!=(+(-))b and a+b!=1 then find the v...

If `a!=(+_(-))b` and `a+b!=1` then find the value of x satisfying the equation `(a^4-2a^2b^2+b^4)^(x-1)=(a-b)^(2x)(a+b)^-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^(4)-2a^(2)b^(2)+b^(4))^(x-1)=(a-b)^(3)(a+b)^(-2) then x=

If (a/b)^(x-1) = (b/a)^(2x-8) , then find the value of x.

If a, b, c are different, then value of x satisfying the equation |{:( 0 , x^(2) - a , x^(3) - b) , (x^(2) + a , 0 , x^(2) + c), (x^(4) + b , x- c , 0):}|=0 is

Find the roots of the quadratic equation: a^(2)b^(2)x^(2)+b^(2)x-a^(2)x-1=0

Find the roots of the quadratic equation a^(2)b^(2)x^(2)+b^(2)x-a^(2)x-1=0

Show that a real value of 'x' will satisfy the equation (1- ix )/(1+i x)=a-i b , where a^(2)+b^(2)=1 , a, b are real.

2x+3y=7(a+b)x+y(2a-b)=3(a+b+1) find the value of a+b

Let A is number of value of 'x' satisfying equation |x-3|=2x-5 and B is the value of 'x' satisfying the equation |log_((1)/(3))2|=log_((1)/(3))x, then A+B is equal to

The value of x which satisfies the equation (x+a^(2)+2c^(2))/(b+c)+(x+b^(2)+2a^(2))/(c+a)+(x+c^2+2b^(2))/(a+b)=0 is