Home
Class 12
MATHS
Let S=sum(r=1)^117 1/(2[sqrtr]+1) where ...

Let `S=sum_(r=1)^117 1/(2[sqrtr]+1)` where [.) denotes the greatest integer function. The value of S is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S=sum_(r=1)^(117)(1)/(2[sqrtr]+1) , when [*] denites the greatest integer function and if S=(p)/(q) , when p and q are co-primes, the value of p+q is

Let S=sum_(r=1)^(117)(1)/(2[sqrtr]+1) , when [*] denites the greatest integer function and if S=(p)/(q) , when p and q are co-primes, the value of p+q is

Let S=sum_(r=1)^(117)(1)/(2[sqrtr]+1) , when [*] denites the greatest integer function and if S=(p)/(q) , when p and q are co-primes, the value of p+q is

Let S=sum_(r=1)^(117)(1)/(2[sqrtr]+1) , when [*] denites the greatest integer function and if S=(p)/(q) , when p and q are co-primes, the value of p+q is

Let S=sum_(k=1)^80 1/sqrtk. Then [S], where [.] denotes the . greatest integer function, equals

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

Evaluate lim_(n->oo) [sum_(r=1)^n1/2^r] , where [.] denotes the greatest integer function.