Home
Class 9
MATHS
1/(sqrt7+sqrt6-sqrt13)=...

`1/(sqrt7+sqrt6-sqrt13)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalise the denominator of (1)/(sqrt(7)+sqrt(6)-sqrt(13))

Rationalise the denominator of each of the following. (i) (1)/(sqrt(7)+sqrt(6)-sqrt(13)) (ii) (3)/(sqrt(3)+sqrt(5) -1) (iii) (4)/(2-sqrt(3)+sqrt(7))

Prove that: 1/(3-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5)+1/(sqrt5-2)=5

The simplest value of (1/(sqrt9-sqrt8)-1/(sqrt8-sqrt7)+1/(sqrt7-sqrt6)-1/(sqrt6-sqrt5))

(sqrt7-sqrt6)/(sqrt7+sqrt6)-(sqrt7+sqrt6)/(sqrt7-sqrt6)=

The value of [1/(sqrt9-sqrt8)]-[1/(sqrt8-sqrt7)]+[1/(sqrt7-sqrt6)]-[1/(sqrt6-sqrt5)]+[1/(sqrt5-sqrt4)] is A)6 B)5 C)-7 D)-6

Show that: 1/((3-sqrt8))-1/((sqrt8-sqrt7))+1/((sqrt7-sqrt6))-1/((sqrt6-sqrt5))+1/((sqrt5-2))=5

Simplify each of the following expressions : (sqrt13-sqrt7)(sqrt13-sqrt7) .

Evaluate the product of [(sqrt5+sqrt6+sqrt7)/2^(1/4)][(sqrt6+sqrt7-sqrt5)/2^(1/3)][(sqrt5+sqrt7-sqrt6)/2^(3/4)][(sqrt5+sqrt6-sqrt7)/2^(2/3)]