Home
Class 9
MATHS
If a=2+sqrt5 and b=1/a then find a^2+b^2...

If `a=2+sqrt5` and `b=1/a` then find `a^2+b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=5+2sqrt(6) and b=(1)/(a), then find the value of a^(2)+b^(2)

24.1fa=5+2sqrt(6) and b=(1)/(a) then find the value of a^(2)+b^(2)

If a=(1)/(3-sqrt(11)) and b= (1)/(a) , then find a^(2)-b^(2)

If a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

if a=sqrt(2)+1 and b=(1)/(a), find the value of a^(2)-b^(2)

If a (2 + sqrt3) = b ( 2-sqrt3) =1 then find the value of 1/(a^(2) +1) + 1/(b^2 +1)

If a + b = sqrt5 and a -b = sqrt3 , then the value of a^(2) + b^(2) is

If a + b = sqrt5 and a - b = sqrt3 , then the value of a^2 + b^2 is

If (sqrt(a + 2b) + sqrt(a - 2b))/(sqrt(a + 2b) - sqrt(a - 2b)) = sqrt3 and a^(2) + b^(2) = 1 , then the find values of a and b. (b) If sqrt((x - sqrt(a^(2) - b^(2)))^(2) + y^(2)) + sqrt((x + sqrt(a^(2) - b^(2)))^(2) + y^(2)) = 2a then prove that (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1