Home
Class 14
MATHS
(sqrt(3)+1)/(2sqrt(2)-sqrt(3))...

(sqrt(3)+1)/(2sqrt(2)-sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

26. Prove that the points O(0,0,0),A(2.0,0),B(1,sqrt(3),0) and C(1,(1)/(sqrt(3)),(2sqrt(2))/(sqrt(3))) are the vertices of a regular tetrahedron...

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

(1)/(1-sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)-sqrt(3))-(2)/(1+sqrt(2)-sqrt(3))+(3)/(sqrt(2))

Simplify (i) (4+ sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (ii) (1)/(sqrt(3) + sqrt(2)) - (2)/(sqrt(5)-sqrt(3)) -(2)/(sqrt(2) - sqrt(5)) (iii) (2+sqrt(3))/(2-sqrt(3)) + (2-sqrt(3))/(2+sqrt(3)) + (sqrt(3)-1)/(sqrt(3)+1) (iv) (2+sqrt(6))/(sqrt(2)+sqrt(3))+(6sqrt(2))/(sqrt(6)+sqrt(3)) -(8sqrt(3))/(sqrt(6)+sqrt(2))

([(sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3))])/([(sqrt(3)+1sqrt(2))+(sqrt(3)-1sqrt(2))])

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Consider the points A(0, 0, 0), B(2, 0, 0), C(1, sqrt(3), 0) and D(1, 1/sqrt(3), (2sqrt(2))/sqrt(3)) Statement - I : ABCD is a square. Statement - II : |AB|=|BC|=|CD|=|DA| .

Express each one of the following with rational denominator: (sqrt3+1)/(2sqrt2-sqrt3)

In a triangle ABC,if A=30^(@) and (b)/(c)=(2+sqrt(3)+sqrt(2)-1)/(2+sqrt(3)-sqrt(2)+1) then C, is equal to

In a triangle ABC, if A=30^(@) and (b)/(c)=(2+sqrt(3)+sqrt(2)-1)/(2+sqrt(3)-sqrt(2)+1) then C, is eqaul to