Home
Class 12
MATHS
" The latus rectum of the hyperbola "9x^...

" The latus rectum of the hyperbola "9x^(2)-16y^(2)-18x-32y-151=0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let l_(1) be the length of the latus rectum of the parabola 9x^(2)-6x+36y+19=0. Let l_(2), be the length of the latus rectum of the hyperbola 9x2-16y^(2)-18x-32y-151=0. Let n be the unit digit in the product of l_(1) and l_(2) The number of terms in the binomial expansion of (1+x)^(n) is

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The equations of the latus recta of the hyperbola 9x^(2) -16y^(2) -18x -32y -151 =0 are

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The length of the latus rectum of the hyperbola 9x^(2) -16y^(2) +72x -32y- 16 =0 is

The latus rectum of the hyperbola 9x ^(2) -16 y^(2) + 72x - 32y-16=0 is

The latus rectum of the hyperbola 9x ^(2) -16 y^(2) + 72x - 32y-16=0 is

Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the hyperbola. 9x^(2)-16y^(2)+72x-32y-16=0

The latus rectum of a hyperbola 9x^(2) - 16y^(2) + 72x-32y-16 = 0 is :

The eccentricity of the hyperbola 9 x^(2)-16 y^(2)-18 x-32 y-151=0 is