Home
Class 11
MATHS
" If "log(2)^(x)+log(x)^(2)=(10)/(3)=log...

" If "log_(2)^(x)+log_(x)^(2)=(10)/(3)=log_(2)^(y)+log_(y)^(2)" and "x!=y" then "x+y^(3)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y find x+y

log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y, the x+y2(b)65/8(c)37/6 (d) none of these

If log_2x+log_x2=10/3=log_2y+log_y2 and x!=y ,then x+y=

If log_2x+log_x2=10/3=log_2y+log_y2 and x!=y ,then x+y=

If log_2x+log_x2=10/3=log_2y+log_y2 and x!=y ,then x+y=

log_(2)(log_(2)(log_(3)x))=log_(2)(log_(2)(log_(2)y))=0 find (x+y)=?

1+log_(x)y=log_(2)y

If (log_(2)(x-1))^(3)+(log_(2)y)^(3)=(12log_(2)(x-1))/(log_(y)(2))-64 and 16y(x-1)!=1. then