Home
Class 11
MATHS
Re((1+i)^(2))/(3-i)=...

Re((1+i)^(2))/(3-i)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the conjugate of each of the following : {:((i),(-5-2i),(ii),(1)/((4+3i)),(iii),((1+i)^(2))/((3-i)),(iv),((1+i)(2+i))/((3+i))),((v),sqrt(-3),(vi),sqrt(2),(vii),-sqrt(-1),(viii),(2-5i)^(2)):}

((1-i)^(3))/(1-i^(3))=-2

" If "z=((1+i)(1+2i)(1+3i))/((1-i)(2-i)(3-i))" then the principal argument of "z"

If (1+i)^2 /(3 - i) , then Re(z) =

If (1+i)^2 /(3 - i) =Z , then Re(z) =

If z_(1)=2-i,quad +2=-2+i, find :Re((z_(1)z_(2))/(z_(1)))

Find Re ((z_(1)z_(2))/(z_(1))), give z_(1)=2-i and z_(2)=-2+i

Reduce to the form A + IB ((1-i)^2-(1+i)^2)/((1-i)^3+(1+i)^3)

The locus of a point on the argand plane represented by the complex number z, when z satisfies the condition |{:(z-1+i)/(z+1-i):}|=|Re((z-1+i)/(z+1-i))| is

Find the modulus of ((3+2i) (1+i) (2+3i))/((3+4i) (4+5i))