Home
Class 14
MATHS
" Phove that "$^(2)c^(2)+c^(2)a^(2)+a^(2...

" Phove that "$^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)-abc(a+b+c)

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>=abc(a+b+c)

Prove that b^(2)c^(2)+c^(2)a^(2)+a^(2)+b^(2)>abc xx(a+b+c)(a,b,c>0)

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

Show that b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)>abc(a+b+c), where a,b,c are different positivine integers.

Prove that: |(b+c)^(2)a^(2)a^(2)b^(2)(c+a)^(2)b^(2)c^(2)c^(2)(a+b)^(2)|=2abc(a+b+c)^(3)

Prove that ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that: ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

For any triangle ABC,prove that (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))sin2C=0

In any ABC ,prove that (b^(2)-c^(2))/(a^(2))sin2A+(c^(2)-a^(2))/(b^(2))sin2B+(a^(2)-b^(2))/(c^(2))sin2C=0

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc