Home
Class 11
MATHS
The Fibonacci sequence is defined by a1=...

The Fibonacci sequence is defined by `a_1=1=a_2,\ a_n=a_(n-1)+a_(n-2)` for `n > 2.` Find `(a_(n+1))/(a_n)` for `n=1,2,3,4, 5.`

Promotional Banner

Similar Questions

Explore conceptually related problems

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1=a_1=a_2( and a)_n=a_(n-1)+a_(n-2),n >2 . Find (a_(n+1))/(a_n), for n = 1, 2, 3, 4, 5.

The Fibonacci sequence is defined by 1 = a_1= a_2 and a_n=a_(n-1)+a_(n-2) , n>2 . Find (a_(n+1))/a_n , for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n) , for n=5.

The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n),for n=5.

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5