Home
Class 11
MATHS
" If "a^(x)=b^(y)=c^(z)=d^(w)," show tha...

" If "a^(x)=b^(y)=c^(z)=d^(w)," show that "log_(a)(bcd)=x((1)/(y)+(1)/(z)+(1)/(w))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If a^x=b^y=c^z=d^w then log_a(bcd)=

If x=log_(2a)((bcd)/(2)),y=log_(3b)((acd)/(3)),z=log_(4c)((abd)/(4)) and w=log_(5d)((abc)/(5)) and (1)/(x+1)+(1)/(y+1)+(1)/(z+1)+(1)/(w+1)=log_(abcd)N+1, then value of (N)/(40)

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If a,b,c,d be in G.P. and a^x=b^y=c^z=d^w , prove that 1/x,1/y,1/z,1/w are in A.P.

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

if x^(2) + y^(2) =z^(2) , "then" 1/(log_(z+x)y) + 1/(log_(z-x)y) = _______

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is

If x=log_(2a)((bcd)/2), y=log_(3b)((acd)/3), z=log_(4c)((abd)/4) and w=log_(5d)((abc)/5) and 1/(x+1)+1/(y+1)+1/(z+1)+1/(w+1) = log_(abcd)N+1, then value of N/40 is