Home
Class 12
MATHS
[(6)/(x)+6y=13],[(3)/(x)+4y=7]...

[(6)/(x)+6y=13],[(3)/(x)+4y=7]

Promotional Banner

Similar Questions

Explore conceptually related problems

( 5)/(x) + 6y = 13, (3)/(x) + 4y = 7 ( x ne 0 )

Verity the property: xx(y+z)=xxy+xxz by tak in g:x=(-8)/(3),y=(5)/(6),z=(-13)/(12)x=(-3)/(4),y=(-5)/(2),z=(7)/(6)

The equation to a pair of opposite sides of a parallelogram are x^2-5x+6=0 and y^2-6y+5=0 . The equations to its diagonals are (a) x+4y=13 ,y=4x-7 (b) 4x+y=13 ,4y=x-7 (c) 4x+y=13 ,y=4x-7 (d) y-4x=13 ,y+4x-7

Solve, using cross - multiplication : 4x + 6y = 15 3x - 4y = 7

If [2x+y,4x,5x-7 4x]=[7 7y-13 y x+6] , then the value of x+y is x=3 , y=1 (b) x=2 , y=3 (c) x=2 , y=4 (d) x=3 , y=3

Solve using Cramer''s rule: (4)/(x+5)+(13)/(y+7)=-1 and (6)/(x+5)-(6)/(y+7)=-5

2x^(2)x3xy^(2)x4x^(3)y^(5) is equal to: 24x^(6)y^(6)(b)24x^(6)y^(7)24x^(7)y^(6)(d)24x^(7)y^(7)

Find the value fo x:y, if (7x - 15y)/(4x + 6y) = (5)/(6).

Find the values of x and y. If (i) (x,4)=(-7,y) (ii) (x-3,6)=(4,x+y)

The equation to a pair of opposite sides of a parallelogram are x^2-5x+6=0 and y^2-6y+5=0 . The equations to its diagonals are x+4y=13 ,y=4x-7 (b) 4x+y=13 ,4y=x-7 4x+y=13 ,y=4x-7 (d) y-4x=13 ,y+4x-7