Home
Class 11
MATHS
[" Assuming all logarithms well defined ...

[" Assuming all logarithms well defined then value of "(1)/(log_(bc^(2))abc)+(1)/(log_(ca^(2))abc)+(1)/(log_(ab^(2))abc)],[" equal "]

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

The value of (1)/(log_(a)abc)+(1)/(log_(b)abc)+(1)/(log_(c)abc)

(1)/(log_(ab)(abc))+(1)/(log_(bc)(abc))+(1)/(log_(ca)(abc)) is

Show that (1)/(log_(a)abc)+(1)/(log_(b)abc) + (1)/(log_(c) abc) = 1 .

Prove that : (1)/( log _(a) ^(abc) )+(1)/(log_(b)^(abc) ) + (1)/( log _c^(abc)) =1

Simplify : 1/(log_(ab)(abc)) + 1/(log_(bc)(abc))+1/(log_(ca)(abc))