Home
Class 12
MATHS
If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=...

If `f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]`. Then the value of f(x).g(x).h(x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Given f(x)=(1)/(1-x),g(x)=f{f(x)} and h(x)=f{f{f(x)}} then the value of f(x)g(x)h(x) is

Given f(x) = (1)/((1-x)) , g(x) = f{f(x)} and h(x) = f{f{f(x)}}, then the value of f(x) g(x) h(x) is

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

If f(x)=(1)/(2-x)and g(x)=(f(f(x)))/(3f(f(x))-1) then the value(s) of x at which g(x) is discontinuous is/are

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is