Home
Class 12
MATHS
y tan^(-1)((x^(2)-yy^(2))/(x^(2)+y^(2)))...

y tan^(-1)((x^(2)-yy^(2))/(x^(2)+y^(2)))=a" prove woy "(x(1-tan a))/(y(1+tan alpha))

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

If tan^(-1)((x^2-y^2)/(x^2+y^2))=a , prove that (dy)/(dx)=x/y((1-tana))/((1+tana)) .

If tan^-1((x^2 - y^2)/(x^2 + y^2)) = a , prove that dy/dx = x (1-tana)/(y (1+tana))

tan^(-1)""(x-y)/(1+xy)+tan^(-1)""(y-z)/(1+yz)+tan^(-1)""(z-x)/(1+zx) =tan^(-1)""(x^(2)-y^(2))/(1+x^(2)y^(2))+tan^(-1)""(y^(2)-z^(2))/(1+y^(2)z^(2))+tan^(-1) ""(z^(2)-x^(2))/(1+z^(2)x^(2))

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

Prove that : tan^(-1)((x-y)/(1+xy)) + tan^(-1)((y-z)/(1+yz)) + tan^(-1)( (z-x)/(1+zx)) = tan^(-1)((x^2-y^2)/(1+x^2y^2))+tan^(-1)((y^2-z^2)/(1+y^2z^2))+tan^(-1)((z^2-x^2)/(1+z^2x^2))

If y = tan^(-1) ((1)/(1 + x + x^(2))) + tan^(-1) ((1) /(x^(2) + 2x + 3)) + tan^(-1) ((1)/(x^(2) + 5x + 7)) + ….n terms , then y(0) is

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1