Home
Class 12
MATHS
Prove that a triangle ABC is equilateral...

Prove that a triangle ABC is equilateral if and only if `tanA+tanB+tanC=3sqrt(3).

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a triangle A B C is equilateral if and only if tanA+tanB+tanC=3sqrt(3)dot

Prove that a triangle A B C is equilateral if and only if tanA+tanB+tanC=3sqrt(3)dot

Prove that a triangle A B C is equilateral if and only if tanA+tanB+tanC=3sqrt(3)dot

Prove that a triangle ABC is equilateral if and only if tan A+tan B+tan C=3sqrt(3).

In an acute angled triangle ABC , the minimum value of tanA tanB tanC is

Statement I The triangle so obtained is an equilateral triangle. Statement II If roots of the equations be tan A, tan B and tanC then tan A + tanB+tanC=3sqrt (3)

Statement I The triangle so obtained is an equilateral triangle. Statement II If roots of the equations be tan A, tan B and tanC then tan A + tanB+tanC=3sqrt (3)

tanA +tanB + tanC = tanA tanB tanC if

tanA +tanB + tanC = tanA tanB tanC if

If in a triangleABC show that : (i) tanA+tanB+tanC =tanAtanBtanC.