Home
Class 12
MATHS
y=x/(a+x/(b+(x/(a+.......

`y=x/(a+x/(b+(x/(a+....`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(x)/(a+(x)/(b+(x)/(b+(x)/(b+-oo)))),(dy)/(dx)=(b)/(a(b+2y))

If y=f(x)=(a x-b)/(b x-a) , show that x=f(y)dot

If x^(y)=y^(x), then ((x)/(y))^(x/y) is equal to a.x^(y/x) b.x^((x)/(y)-1) c.1d.x^((x)/(y))

If y=(x+a)(x+b)(x+c)(x+d)/(x-a)(x-b)(x-c)(x-d) then the value of dy/dx:

Find the derivative of y^(x)+x^(y)+x^(x)=a^(b) w.r.t.x

The average of the reciprocals of x and y is (a) ((x+y))/((x-y)) (b) ((x+y))/(2xy) (c) (2(x+y))/(xy) (d) (2xy)/((x+y))

The quotient of x\ b y\ y added to the product of x\ a n d\ y is written as (a) x/y+x y (b) y/x+\ x y (c) (x y+x)/y (d) (x y+y)/x

If y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1 then (y')/(y)=

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]