Home
Class 12
MATHS
(1)/((e^(x)-1))...

(1)/((e^(x)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

f(x)=(e^(1/x)-1)/(e^(1/x)+1) find f^(-1)(x)

Compute f'(0^(+)) if f(x)=(x(e^(1/x)-1))/(e^(1/x)+1) :

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

e^(-(1)/(x))[1+e^((1)/(x))]^(-1) is

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-

Evaluate lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1),x!=0