Home
Class 12
MATHS
y=(e^(2x))/(e^(2x)+1)...

y=(e^(2x))/(e^(2x)+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=

If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)) , prove that : dy/dx=-(2e^(2x))/(1+e^(4x)) .

If y = tan^-1((e^(2x) +1)/(e^(2x) -1)) , prove that : dy/dx =-(2e^(2x))/(1+e^4x)

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

"If "y=logsqrt((1+cos^(2)x)/(1-e^(2x)))", show that "(dy)/(dx)=(e^(2x))/(1-e^(2x))-(sinxcosx)/((1+cos^(2)x)).

The inverse of the function y=(e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)) is/an

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

(e^(2x)+2e^(x)+1)/(e^(x))