Home
Class 12
MATHS
[" For "x in(0,(pi)/(2))," if "],[cos'(7...

[" For "x in(0,(pi)/(2))," if "],[cos'(7)/(2)|+cos2x+sqrt(sin^(2)x-48cos^(3)x|sin x=x-cos^(4)|cos x|" then the ")],[" value of "k=]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in(0,(pi)/(2)), then show that cos^(-1)((7)/(2)(1+cos2x)+sqrt((sin^(2)x-48cos^(2)x))sin x)=x-cos^(-1)(7cos x)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0,pi/2), then show that cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

If cos(pi/4-x)cos2x+sinxsin2xsecx=cos x sin 2x sec x+cos(pi/4+x)cos 2x then possible value of sec x is

int_(0)^((pi)/(2))(x sin x cos x)/(cos^(4)x+sin^(4)x)dx=

" (7.) "int_(0)^((pi)/(2))(sin^(2)x-cos^(2)x)/(sin^(3)x+cos^(3)x)dx