Home
Class 12
MATHS
" The value of "sum(r=0)^(n)(-1)^(r)n(C(...

" The value of "sum_(r=0)^(n)(-1)^(r)n_(C_(r))(1+r log_(e)10)/((1+log_(e)10^(n))^(r))" equals: "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1)))

The value of sum_(r=1)^(10)r(n C_(r))/(n C_(r-1)) =

The value of sum_(r=0)^(10)r(C(n,r))/(C(n,r-1))=

sum_(r=0)^(n)(-1)^(r)*^(n)C_(r)(1+r ln10)/((1+ln10^(n))^(r))

The value of sum_(x=1)^(n)(-1)^(r+1)(C(n,r))/(r+1) is equal to

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

The value of sum_(r=1)^(n)log((a^(r))/(b^(r-1))) , is

If C_(0),C_(1),C_(2),.........,C_(3) denotes the binomial coeffcients in the expanssion of (1+x)^(a), then sum_(r rarr a)^(a)(-1)^(rn)C_(r).(1+r log_(e)10)/((1+log_(e)10^(x))^(r))=

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to