Home
Class 12
MATHS
If vec a | vec b, then vector vec v in...

If `vec a _|_ vec b`, then vector `vec v` in terms of `vec a and vec b` satisfying the equations `vec v.vec a=0 and vec v .vec b =1 and [vec v vec a vec b]=1` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If the vectors vec a and vec b are perpendicular to each other,then a vector vec v in terms of vec a and vec b satisfying the equations vec v*vec a=0,vec v*vec b=1 and [vec vvec avec b]=1

If vec b is not perpendicular to vec c , then find the vector vec r satisfying the equation vec rxx vec b= vec axx vec b and vec r. vec c=0.

If vec A=(1,1,1) , vec C=(0,1,-1) are two given vectors, then find a vector vec B satisfying the equations vec A xx vec B=vec C and vec A * vec B=3 .

If vec a and vec b are unit vectors such that |vec a xx vec b| = vec a . vec b , then |vec a + vec b|^(2) =