Home
Class 11
PHYSICS
The unit vector along vec(i)+vec(j) is ...

The unit vector along `vec(i)+vec(j)` is :-

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

The unit vector along vec(A)= 2 hat i + 3 hat j is :

The unit vector along vec(A)= 2 hat i + 3 hat j is :

The unit vector along vec(A)=2hat(i)+3hat(j) is :

The unit vector along vec(A)=2hat(i)+3hat(j) is :

Let veca = hat i + hat j + hat k, vec b = 2 hat i + 3 hat j vec c = 3 hat i + 5 hat j - 2 hat k , vec d = - hat j + hat k (i) Find vec b - vec a . (ii) Find the unit vector along vec b - vec a . (iii) Prove that vec b - vec a and vec d - vec c are parallel vectors.

If vec(a) is a unit vector and vec(a) xx vec(i) = vec(j) , then vec(a).vec(i) =