Home
Class 12
MATHS
[*cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))...

[*cot^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]],[<(pi)/(2)quad [2009]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the simplest form : cot^(-1) [(sqrt(1+sinx)+sqrt(1-sin x))/(sqrt(1+sinx)-sqrt(1-sin x)]], x epsilon [0, pi/4]

Prove that cot^(-1) ((sqrt(1+sin x) +sqrt(1-sin x))/(sqrt(1+sin x) -sqrt(1-sinx)))=(x)/(2), x in (0, (pi)/(4)) .

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=

Fill in the blank choosing correct answer from the brackets cot^(-1)[(sqrt(1-sin x ) +sqrt(1+sinx))/(sqrt(1-sin x)- (sqrt 1+ sin x))]=_______ (2pi -x/2,x/2,pi- x/2)

Prove that : cot^-1[(sqrt(1+sin x) + sqrt(1-sin x))/(sqrt1+sin x + sqrt(1-sin x))] = x/2, x in (0, pi/4)

If y=(tan^(-1)(sqrt(1+sin x)+sqrt(1-sin x)))/(sqrt(1+sin x)-sqrt(1-sin x)) find the value of (dy)/(dx)

Differentiate 'tan^(^^)(-1){(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))},darr backslash0

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))