Home
Class 10
MATHS
" 7."quad |x|^(2)-|x|+4=2x^(2)-3|x|+1...

" 7."quad |x|^(2)-|x|+4=2x^(2)-3|x|+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x (i) |x+1|=4x+3 (ii) |x+1|=|x+3| (iii) 7|x-2|-|x-7|=5 (iv) ||x-1|-2|=6x+8 (v) |2x^(2)-3x+1|=|x^(2)+x-3|

Divide the product of (4x^(2)-9) and (2x^(2)-3x+1) by (4x^(3)-7x+3) .

If x be real, prove that the value of (2x^(2)-2x+4)/(x^(2)-4x+3) cannot lie between -7 and 1.

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

lim_(x rarr1)(x^(2)-7x+12)/(x^(2)+4-3x-4)

Subtract : 2x^(4) - 7x^(2) + 5x + 3 " from " x^(4) - 3x^(3) - 2x^(2) + 3

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

" 2" f(x)=4x^(4)-3x^(3)-2x^(2)+x-7,g(x)=x-1

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)